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EQUATIONS OF MOTION OF GRANULAR MEDIA 

B. P. Sibiryakov UDC 534.21 

Acoustical studies of granular media used in petroleum and gas collectors have recently 
uncovered a number of unusual phenomena. Thus in highly porous bodies with empty or gas- 
saturated voids, the ratio of the velocities of S and P waves is often inexplicably large 
(Vs/V P > I//2), which corresponds formally to negative values of the Poisson coefficient. 
According to data of [I] and other studies the value of Vs/Vp sometimes exceeds 0.75, i.e., 
the Poisson coefficient is less than--0.3. Moreover, wave velocities measured by various 
authors in the same specimens differ among themselves greatlY (up to 10-15%), although in 
"good" test specimens (metallic ones, for example), they practically coincide. The experi- 
mental data indicate the insufficient development of physical theories of weak wave propaga- 
tion in granular media such as hydrocarbon collectors. 

Granular media possess two important unique features. First the linear dimensions of 
the grains allow introduction of a new dimensionless characteristic differing from the poros- 
ity f, which describes the pore space, namely ~ = o0r0/3, o0, the specific surface of the 
porous body, where r 0 is the mean grain radius. It has been proven by integral geometry 
that 0 ~ n ~ I -- f. Second, the presence of contacts between grains and sections of grains 
free from stress leads to a comple x stressed state in each grain taken individually, so that 
aside from the mean (large scale) field, which changes markedly at distances of the order of 
a wavelength, a fluctuation field develops, which varies significantly at distance of the 
order of the individual grain size. Development of the fluctuation field leads to scattering 
of the energy contained in waves which are no longer purely P and S waves at each individual 
point, but only on the average. This implies that P and S waves are formed only by the aver- 
age (large scale) stress and deformation fields, while fluctuations insure scattering of 
waves and a decrease in the amplitude of the mean field. In constructing a model of a con- 
tinuous medium equivalent to a granular skeleton, the two features of the microinhomogeneous 
medium mentioned above must be considered. It is insufficient merely to require free equiv- 
alency of the media in the sense that the ratios of stress to deformation for the skeleton 
and the continuous models coincide. The presence of scattering and attenuation of the large 
scale field must lead to some wave "absorption" mechanism, produced by the scattering. 

The above considerations demand a precise solution of the problem of elastic equilibrium 
for an individual grain, which in principle can be given by the ratio of stress to deforma- 
tion at the center of the grain (i.e., the mean values of ~ and ~ in the structure) and the 
fraction of energy ~ contained in the fluctuation field referred to the mean field. These 
constants, which depend on the geometry of the pore space and material of the skeleton, allow 
transition to construction of an equation of motion of some set of particles with known mean 
values of the Lama coefficients and known fraction of the energy scattered. It can be ex- 
pected that the presence of isotropic scattering is equivalent to introduction of additional 
randomly oriented sources which collect the energy of the large scale field, attenuating the 
latter. The goal of the present study is to derive equations of motion (and equilibrium) 
for the mean field, since it is only this mean field which is recorded by any device utilizing 
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a sufficiently large set of particles, the mean values of the fluctuation stresses and defor- 
mations being equal to zero. Thus, with regard to force, the fluctuation field is equivalent 
to zero, yet with respect to energy its influence is quite significant. 

Let some volume V be filled by granular particles having contact areas in common through 
which loads are transmitted. On the free portions of the grain surfaces loading is equal to 
zero. The equation of motion for the mean field will be sought in the form of an asymptotic 
equation, where the small parameter ~ will represent the ratio of the grain radius r0 to the 
mean linear dimensions of the region V, i.e., ~ = r0V -I/3 

It has been shown in a number of studies [3, 4] that the displacement field differs 
little from the mean field in absolute value (displacement fluctuations contain a factor of 
the order of magnitude of ~). However, with regard to intensity fluctuation deformations and 
stresses are comparable in size to the mean stresses and deformations. Considering this fact, 
we write the displacement field in some volume V containing a large number of particles, yet 
small enough that its linear dimensions are much less than the wavelength of the propagating 
wave, in the form 

U i ( a ' , t  ) : u i ( . t , l  ) + ~u~( , i "e , t} .  (1) 

In Eq. (|) the displacement field Ui(x, t) depends on three spatial coordinates, denoted by 
the single symbol x, and on time t. The first term depends on the "slow" variable x and 
represents the large scale field, while the second depends on the "fast" variable x/m and is 
the fluctuation component. Assuming that u i and v i are of the same order of smallness, then 
ui(x , t) ~ gvi(x/g, t). Consequently, we have the obvious relationships 

- e , ,  = ( 2 )  

e ~ =  -i- - - + - -  ' E ~ = e ~ + e m "  (3) ko,,  o,,J 

~n Eqs. (2), (3) yj = xj/E, the total deformation tensor Eik is composed of the mean tensor 
eik and the fluctuation tensor eik- It is evident from Eqs, (2), (3) that the deformations 
eik are of the same order as the deformations eik , although the mean value <gik > = 0. 

The stress field in the skeleton Zik = X(~ + 0)@ik + 2~(eik + eik) also consists of large 
and fine scale fields. We will write the difference 

Ov'~h (4) 
d i v Q - - E = ~ U  i, Q~=ZikU h, 

where E is the density of the potential energy of deformation, .[ EdI;:  .f PiuidS; ui is the dis- 
V S 

placement vector; Pi is the loading vector; V is the volume of the region; and S is the sur- 
face bounding the volume V. Under conditions of quasistatic equilibrium (which occurs in 
deformation of a volume V, the linear dimensions of which are small in comparison to the 
wavelength) the divergence of the Umov--Poynting vector E = divQ is exactly equal to the elas- 
tic energy density of the body, so from Eq. (4) we have an equilibrium equation in the form 

OEi~'~.~" h =: 0. ( 5 )  

However for the mean field dik we have no equation analogous to Eq. (5), since 

It was considered in Eq. (6) that the values of the products of the mean field by the fluc- 
tuation field are equal to zero (on the average). However, this cannot be said of the prod- 
uct of the fluctuation force fi = 38ik/3Xk times the fluctuation displacement ui- This quan- 
tity is of the order of magnitude of the fluctuation energy. Substituting Eq. (I) in Eq. (4), 
we obtain 

o~. h --(.~+~,,';) \ ~  ~T2,~ +o,,,p.-' a-;~'p~(-6+3)~ 

- ,,<'~" "- } oT~,h . imhl,,~ [~''~- ,~,,~ou~) 0", ,-~,,.,~, ' - ' )  
0 h 
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In the second and third terms of Eq. 

Consequently, 

(7) we have expressions of the type 

,] O V 1 - - ~ 1 1  = - -  011 e l l  2-t ~, ~-  2p, O 'V7 (~ -I- 21 x) !'~- Oy---~ ) 2 0.~,~' 

- . - - 

_7~..-1-v.s ~ - - - ~ 2 o e ~  o,~%~ T I o  ~ - , a!,i/I We will attempt to average and similarly (kn-2~) v~ a!S~ \ Y~ 

quantities of the type 32v2/3y 2 at distances ~ much larger than the grain size but at the same 
time small in comparison to the linear characteristic dimensions of the nonsteady state pro- 
cess (for example, cT, where T is the time the signal acts at the source). Then 

We can perform a second averaging 

{ ~2 2 ~  1 2 - -  F2 

Since v 2 is a random function at points of the medium, it is equally probable to obtain a dif- 
2 2 

ference Vx+ ~ -- v x positive or negative in sign. Thus, obviously, the mean value of this dif- 
ference is equal to zero. We obtain the contribution from this type of expression in the form 
of the fluctuation component of the compression energy, i.e., oiigii . In detailed notation 
the three terms of Eq. (7) have the form 

Expressions of the type 

transform to the form 

ll.1 - -  -~-t U,~ ""  ~ ~ ( l ; 1  7 q .  - ~ Z' 3 d i V v  - % ~ + N  a,,h + t \  .'q "~.ay~ ' . 

t.l v 1 ~ -t- v~ Oy~_" J 

/ (,,,-,y- (.,,o7 
&'l ~Jr2 

Adding and subtracting the quantity 2 tJy~0!i-~' we have 

17f.'1 ~. Or.~ 3z,] av, 2 , I o~,~ ~J'G 

" /  t=.'~ ' ~u,!  + ~ " : -  - - ~ -  T o,,~ )J 

For mean values, considering that ~ ~ s / ~ l  =0 '  "~~ ~ @ ' 7 / 9 "  ~0, we obtain a contribution 

in the form 2jJe~2 = 2~12ez2, i.e., the shear components of the fluctuation energy. Since the 
mean values of the cross products are equal to zero when i, k differ from each other, after 
averaging the first three terms of Eq. (7) take on the form 

~)Oih _ 
9.r6: ui - -  ~"i' 171 --- O"ih'cTih , 
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It remains to clarify the meaning of the term 

( O k  o!~ } 
~. C i h  t 

or 

Ok 0u E U. +. o . 

First of all we note that 3 ~ / 3 X k ,  ap/Sx k are concentrated at r = r0, the grain boundaries, 
or more precisely, on the portions of the particles free of loading, i.e., on the free sur- 
face of the pores, where they take on infinite values. In the internal region of a grain and 

on the contact surface ~X/3x k = 3M/3Xk= 0. The sign of these products on the loadfree grain 
surface is determined by the cosine of the angle formed between the axis and the direction 
of the radius vector from the center of the grain to the point of the free surface in ques- 

tion. Therefore, for points of the free surface ~%/3x k = 3Xnk/~r = ~(r)nk, where n k = cos (n, 
Xk). We average Eq. (8) over grain volume: 

I.~Vo 0s erich q- 2 Eil: UidV = ~ Ui (s -}- 2FE,ih ) nl, = ~ UiXihnhdS. 
8 *  s* 

Here S* is the portion of the grain surface free of loading. In view of the obvious rela- 

tionship b e t w e e n  s t r e s s e s  a n d  l o a d s  we h a v e  

l--~" ~XiknhU~ dS= ~ ~P~UidS=O" (9 )  V o IvY" o �9 

S*  S *  

The integral of Eq. (9) is the deformation energy, which is concentrated on the free surface 
of the grain. That latter quantity is equal to zero in view of the obvious relationship for 
an empty skeleton, Pi[S* = 0. Thus, the mean value of Eq. (8) is equal to zero. Then aver- 
aging of the expression Ui3Zik/3X k leads to equilibrium equations 

= ( 1 o )  

where Ei is the portion of the fluctuation energy produced by products of stresses and de- 
formations with fixed subscript i. Since the fluctuation energy is a function of the mean 
energy E, we write it in the form 

= A + a E + ~ K ~ + . . .  (11) 

Considering the absence of a fluctuation field upon disappearance of the mean field, we must 
take A = 0. If we limit ourselves to the first term in the expansion of Eq. (11), then we 
obtain the expression E = ~E, where e is a constant dependent on the structure of the pore 
space and equal to zero for a continuous medium. 

Equilibrium equation (10) takes on the form 3~ik/3Xk = ~Ei/ui. The equation of motion 
is related to consideration of inertial forces, and according to Eq. (I) inertial forces are 

almost totally (to the accuracy of s) determined by the acceleration of the mean field. There- 
fore the equations of motion can be represented in the form 

0~J&~ h - -  ~E~I~ = P,~ ~, ( 1 2) 

where p is the mean density of the structure. In the future we will omit the bar symbol above 
the average field. In order to complete system (12), it is necessary to relate the mean 

stresses Oik to the mean deformations. This is a unique problem and can be solved exactly 
for an individual grain by the methods of boundary integral equations [5]. 

In the presence of an average longitudinal plane wave all but one of the deformations 
(of the mean field) are equal to zero, so that the mean energy E = o-e = (X + 2~)(3u/3x) 2 
In this case nonlinear equation (12) has the form 

a,~:---~'-~ka.~ ] - - ?  at 2 

and at ~ = 0 transforms to the conventional wave equation for a continuous medium with c 2 = 
(X + 2M)/p0(1 -- f), where f is the porosity of the skeleton, Po, Dis the density of the grain 
material, and X, D are the mean values of the Lam~ coefficients on the structure. The con- 
stants c and e are completely defined by the structure of the pore space, i.e., the porosity 
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f, the product ~ = o0r0/3 of the specific surface times the mean grain radius, and the average 

number of contacts n. 

If for Eq. (13) we pose the problem of wave propagation for instantaneous application of 

an isolated load, then the problem contains no characteristic times or distances. 

The dimensionless deformation will depend only on the single dimensionless variable ~ = 

x/ct. Such solutions are termed self-similar. We will seek a solution of the problem of 
integration of Eq. (13) with a boundary condition of the form 

O u  [ 0 ,  t < O, 
0~---'7~=~ eo(O)' t ~ O. 

We set u = ct[u(~) + c0], where u(~) is the dimensionless function, and co is a dimensionless 
constant. Then 

Ou - ,  0 2~t ~ - .  

O-- i f= u~, Ox~ - -  ct  u ~ ,  

o,, 
Ot " c :. - g2H~'~ �9 

One of the variables is thus eliminated, and in the case of self-similar motions Eq. (13) 

transforms to an ordinary differential equation (the bar above the dimensionless functions 

is omitted) 

u'~(u + @(1 - ~) -- ~u '2. 

The b o u n d a r y  c o n d i t i o n  f o r  Eq.  (14 )  i s  f o r m u l a t e d  on t h e  l i n e  ~ = 0 ,  i . e . ,  a t  x = 0 ,  w h e r e  
t h e  d e f o r m a t i o n s  u ' ( 0 )  a r e  s p e c i f i e d .  E q u a t i o n  (14 )  a d m i t s  an  e x a c t  s o l u t i o n ,  s i n c e  u p o n  t h e  
s u b s t i t u t i o n  u ' / u  + co = v i t  t r a n s f o r m s  t o  an  e q u a t i o n  w i t h  s e p a r a b l e  v a r i a b l e s .  I n s t e a d  
o f  Eq.  (14 )  we h a v e  a f i r s t - o r d e r  e q u a t i o n  

v' + v2(t -- ~!(t -- ~)) = 0, 

which can be solved in the form 

I 

d. I--~' 
$ + D + T l n y - $ -  ~ 

where D is an arbitrary constant. It is obvious that as ~ * 0, i.e., on the boundary x = 0, 

u' § (u + co), as in conventional elasticity, where u = A(~ -- I), and the deformation u' is 

constant. This requirement defines the value D = --I. Therefore 

u' 1 
(15) 

We now choose the constant co such that the displacements on the front ~ = I are equal to 

zero. This requirement determines the final form of the solution 

, 0 

where 

A -- 
-- e o (0) 

1 

I - - e x p  J' v (.~, ~ )  d r  
0 

In Eq. (16) the second term is constant, insuring equality to zero of the displacements on the 

wave front ~ = I and ahead of it. As ~ § 0 solution (16) transforms to a conventional elas- 
tic self-similar solution, i.e., constant deformation behind the front of the wave, with a 
discontinuity at the front itself. At ~ ~ 0 the deformations behind the wavefront E = I are 
no longer constant, but are functions of the variable 6. It is also significant that the 
deformation (and particle velocity) at the front ~ = I are equal to zero in view of the in- 

finite value of the logarithm in Eq. (15). Consequently, in the model considered strong dis- 
continuities cannot exist. Deformations set in smoothly, and P and S waves can only be weak 
discontinuity waves. It is interesting that the energy of the wave propagates not only at 
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velocities close to c, but also at any other velocities less than c. This fact greatly com- 

plicates interpretation of waves in microinhomogeneous media, since the energy of the initial 

disturbances is extremely small in comparison to the energy of slower waves. Concrete calcu- 
lations of displacements and deformations as a function of ~ for various values of a are 

shown in Fig. la, b, where a = 0.01 and 0.11, respectively, the solid lines are dimensionless 
displacement u/ct vs E, and the dashes are the dependence of deformation on ~. 

Equation (13) with c = I has a solution in the form of waves propagating in one direc- 

tion at a still unknown velocity, i.e., u = f(t -- x/a). Substituting this expression in Eq. 
(13), we obtain the ordinary equation 

I ' g 1' 

whence 
I 

~ = C  ( t - - z l a i  (1-~)/(l- 'P) ' ( 1 7 )  

where C is an arbitrary constant. If in solution (17) we take the exponent I/[(I -- a)/(1 -- 
a2)] = n, then the wave velocity a is a function 

~(., ~ ) = 1 / l  .... n~/( l - - . 'T:  

Thus, with a linear increase in deformation (quadratic increase in displacement) n = 2 and 

correspondingly a = ~1--2-~ ~ I -- a. Thus, in the absence of a discontinuity in deformation 
the wave velocity is significantly lower. With further increase in n the velocity increases, 
tending to the limit a = /I - ~, which is always less than in the case of a suddenly applied 

load. If n = I/(I -- a), i.e., the deformations increase very slowly [by a law e(0, t) = 
t~/(:-~)], then a = 0, and in general, waves will not propagate. This result differs greatly 
from that of pure wave processes, for which waves propagate for any law of loading change 

with time. Thus, depending on the type of load applied, the wave velocities decrease sig- 

nificantly. Therefore, in experiments an entire zone of unstable oscillation reception can 
develop in the range from c(I -- a) to c. 

For a wave process we have the relationship u = f(t -- x), and consequently ut + ux = 0. 
This is obviously not the case for Eq. (13), however the hypothesis that ut + u x = O(a) de- 

velops. In the characteristic variables ~ = t -- x, q = t + x the equation of motion has the 
form 

0% a ( ou o., ) 2 
o~o,i + ~ - = o. ( 1 8 )  .' 41~ O'q at 

T a k i n g  3 u / 3 q  = v ,  we n o t e  t h a t  f o r  t h e  f u n c t i o n  v ( g ,  q) Eq.  (18)  i s  t h e  R i c c a t i  e q u a t i o n  

= 0 .  

I f  t h e  h y p o t h e s i s  t h a t  3 u / 3 q  = O(~)  i s  v a l i d ,  t h e n  t h e  t e r m  ~ v 2 / 4 u  = O ( a S ) ,  and  may b e  n e -  
g l e c t e d .  I n  t h i s  c a s e  t h e  s o l u t i o n  i s  o b v i o u s :  

0~1 ..... "7f, u~ j u-(l  [ ~) \ O~ J ~ '  ( 1 9) 

I f  we n e g l e c t  t e r m s  o f  t h e  o r d e r  o f  2 ,  t h e n  Eq.  (19 )  c a n  b e  r e p l a c e d  b y  

&t ~ ~ [ Ou. \2 
o,, : (2o) 

Thus it proves to be the case that 3u/aq is of the order of magnitude of a. This justifies 
the hypothesis made above. Now it can easily be proved that the wave operator applied to 
the combination u x + u t vanishes to the accuracy of 0(~2), i.e., m(u x + u t) = O(a2). There- 
fore, the linearized equation of motion is a third-order equation 

~("~- i  "0  ~0"  (21)  

The general solution of Eq, (21) is: 

. ~ ~[h($)-:- h(q)l -F h(~). 
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where fl, ff, f3 are arbitrary functions. The presence of three arbitrary functions permits 
solution of the important question of the configuration of the weak discontinuity wave front 
x = xo(t). In fact, on the boundary x = 0 the deformations ~u(0, t)/3x = h(~) are specified 
on the weak discontinuity front u x = u t = 0, and moreover, on the boundary x = 0 from Eq. (20) 

s u z (0, t) . 
we have one more condition ux~-utIx= o ..... TM(t), where M(t)~ j ~ a t .  The four conditions 

0 

enumerated completely determine the three unknown functions and the front configuration x = 

x0(t). Setting x0(t) = t~(t), we write 

- -  ~ [12' (t) ~-.~[(t)/4]t~:=h(t)+aM(t)/4; ~ . 2~ ( 2 2 )  

/~[t(|-~- ~)'(l ..... ~)] --f=(l) : :  M(I)/4. 

Eliminating the function fe from Eq. (22) we obtain the functional equation of the front, 
i.e., the function ~(t). Concrete calculation of the front for a sinusoidal (with reference 
to deformations) signal products a result in which initially the front moves with a velocity 
c(] --~), which to the accuracy of 2 coincides with the exact solution for a linearly in- 
creasing load. Then the front velocity increases, although under all circumstances ixo(t)/ 

t < c. 

Upon abrupt application of loading a region exists in which linearization of the motion 
is impossible. In this case the motion must be linearized in a region bounded by the line 
x = 0 and some weak discontinuity wave x = x0(t), subject to determination. In the region 
included between the characteristic x = ct and the front x = x0(t) the motion will obviously 
be self-similar [Fig. 2, e = 0.1, lines I, 2 correspond to x = x0(t), line 3, x = ct]. 

In the region bounded by the lines x = x0(t) and x = 0 let the motion be described by an 
equation u" = "u/c 2, so that 

4.", t) ~ ]~(t - - / 4  - i - / %  + .~/c), 

where fl, f2 are arbitrary functions. Correspondingly, 

o~ , '~" - I' (t + .#~0 + f~ (t - . ~ ' / c ) .  c ~ ==- Q (t  + x /~)  - -  I'~ (t - . , /c ) ,  ot  2 

On the second weak discontinuity front (in view of the continuity of velocities and deforma- 

tions) 
p �9 

e lu(~) - -  ~u' (~)] == / 1 I t - - %  (t).ie] + i~ [ t ~ .  % (t)/c]; ( 2 3 )  

cu' (~) - ~ It + .% (O/('J - -  ]'j [t - - .% (t)/c]. ( 2 4 )  

M o r e o v e r ,  o n  t h e  b o u n d a r y  x = 0 t h e  d e f o r m a t i o n  e 0 ( t )  i s  s p e c i f i e d ,  i . e . ,  
, t 

c(m (o, t)/~.~. /.~ (t) - -  i~ tl),. 

or 

t r 

re ~ [ t + % (t)/e] ...... f2  [t -F z o ( t ) lc]  - 11 I t + % (t)lc]. ( 2 5 )  

Equations (23)-(25) are sufficient for determination of the arbitrary functions El, f2 and 
the equation of the second front x = x0(t). Adding and subtracting Eqs. (23), (24) with con- 
sideration of Eq. (25), we find 
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7, (~.) - I -  (1 - -  D 7~" (~.) -- 2% I t -V x o (t)l<'i -'r- 2.#'~ I t  @ x o (t)l.li<', (26) 
,7. (~) - ( l  -t- .~),1' ~.~) .~ 2#'~ i t - ..~.,> (t),'+.] ,<, 

Eliminating from Eq. (26) the unknown function f[, we obtain a functional equation for the 
line x = x0(t). To do this we set t(1 + ~) = z. Then Eq. (26) takes on the form 

~ ( z ' l  i )  ] (2--~..'t)~'(~,.'t . - i )  ~ 2<,,,(:) ">.zi'(~.).%, 

77. C~it - I )  . :,; ' tU~, - -  l ) , ' t  - <>.;'j l~. i t .  - D t t t  - l -  g ) l i < .  

Replacing z in the second expression by the quantity z(1 + ~)/(I -- 6) and subtracting the 
second equation from the first, we obtain the functional equation of the second front, re- 
lating t and 6: 

7 ( ~ )  ..... 7 1 ( 1 - - j -  ~ 7 % ( l - .  ~ )1 - ! -  ( t  �9 $ ~ ' ( ~ )  i ( !  i ~ ) ~ ' l ( J  4 -  ~ )~ i ( i  - -  %)- - I 1 . ( I  . ~) ,, 2e,~[/( l  I ~ ) ] .  ( 2 7 )  

Figure 2 shows calculations of the kinematics of the boundary of the second weak discontin- 
uity, which in nonlinear mechanics is usually termed the unloading wave. 

At t = 0 Eq. (27) is satisfied by the substitution ~ = 0. Consequently, the second front 
begins motion with zero velocity. It is evident from calculations that with passage of time 
the velocity of the second front approaches c, So that in the far zone hodographs of the on- 
sets of the two fronts will be parallel straight lines. The linearized problem immediately 
shows attenuation of a plane wave with distance, because the wave equation is complemented 
not by the boundary problem of conventional elasticity, but a condition close to mixed, where- 
in one of the boundaries approaches the characteristic. On this boundary the displacements 
and deformations vanish, which determines the attenuation of the plane wave. In experiment 
the second front must have much higher intensity than the first, since the particle velocities 
and deformations at x = ct are equal to zero, and the recording device can detect only second 
derivatives of the displacements. On the second front the displacements and deformations are 
nonzero. 

Thus, the model considered shows that measurement of acoustical wave velocity in a micro- 
inhomogeneous medium is not at all a trivial problem. Unstable recording of wave velocities 
in the range from c(I -- ~) to c (according to the data of [5] the quantity ~ for highly porous 
bodies may reach 0.1-0.15 or more) can lead to the appearance of negative Poisson coefficients, 
even when static measurements do not confirm this. The dependence of wave velocity on the form 
of loading applied explains the paradoxical fact that the wave velocity in such media not only 
depends on the medium itself, but is in some sense a function of the experimental equipment 
used. 
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